Reflected Adaptive Differential Evolution with Two External Archives for Large-Scale Global Optimization

نویسندگان

  • Rashida Adeeb Khanum
  • Nasser Tairan
  • Muhammad Asif Jan
  • Wali Khan Mashwani
  • Abdel Salhi
چکیده

JADE is an adaptive scheme of nature inspired algorithm, Differential Evolution (DE). It performed considerably improved on a set of well-studied benchmark test problems. In this paper, we evaluate the performance of new JADE with two external archives to deal with unconstrained continuous large-scale global optimization problems labeled as Reflected Adaptive Differential Evolution with Two External Archives (RJADE/TA). The only archive of JADE stores failed solutions. In contrast, the proposed second archive stores superior solutions at regular intervals of the optimization process to avoid premature convergence towards local optima. The superior solutions which are sent to the archive are reflected by new potential solutions. At the end of the search process, the best solution is selected from the second archive and the current population. The performance of RJADE/TA algorithm is then extensively evaluated on two test beds. At first on 28 latest benchmark functions constructed for the 2013 Congress on Evolutionary Computation special session. Secondly on ten benchmark problems from CEC2010 Special Session and Competition on Large-Scale Global Optimization. Experimental results demonstrated a very competitive performance of the algorithm. Keywords—Adaptive differential evolution; large scale global optimization; archives.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A limited memory adaptive trust-region approach for large-scale unconstrained optimization

This study concerns with a trust-region-based method for solving unconstrained optimization problems. The approach takes the advantages of the compact limited memory BFGS updating formula together with an appropriate adaptive radius strategy. In our approach, the adaptive technique leads us to decrease the number of subproblems solving, while utilizing the structure of limited memory quasi-Newt...

متن کامل

Well Placement Optimization Using Differential Evolution Algorithm

Determining the optimal location of wells with the aid of an automated search algorithm is a significant and difficult step in the reservoir development process. It is a computationally intensive task due to the large number of simulation runs required. Therefore,the key issue to such automatic optimization is development of algorithms that can find acceptable solutions with a minimum numbe...

متن کامل

Self-adaptive Differential Evolution with Sqp Local Search

In this paper we present experimental results of self-adaptive differential evolution algorithm hybridized with a local search method. The results of the proposed hybrid algorithm are evaluated on a set of benchmark functions provided by the IEEE Congress on Evolutionary Computation (CEC 2008) special session on Large Scale Global Optimization. Performance comparison of our algorithm with other...

متن کامل

Control of nonlinear systems using a hybrid APSO-BFO algorithm: An optimum design of PID controller

This paper proposes a novel hybrid algorithm namely APSO-BFO which combines merits of Bacterial Foraging Optimization (BFO) algorithm and Adaptive Particle Swarm Optimization (APSO) algorithm to determine the optimal PID parameters for control of nonlinear systems. To balance between exploration and exploitation, the proposed hybrid algorithm accomplishes global search over the whole search spa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016